\(\int \frac {\sqrt {c+d x^2}}{x^2 (a+b x^2)} \, dx\) [682]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 70 \[ \int \frac {\sqrt {c+d x^2}}{x^2 \left (a+b x^2\right )} \, dx=-\frac {\sqrt {c+d x^2}}{a x}-\frac {\sqrt {b c-a d} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{a^{3/2}} \]

[Out]

-arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))*(-a*d+b*c)^(1/2)/a^(3/2)-(d*x^2+c)^(1/2)/a/x

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {486, 12, 385, 211} \[ \int \frac {\sqrt {c+d x^2}}{x^2 \left (a+b x^2\right )} \, dx=-\frac {\sqrt {b c-a d} \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{a^{3/2}}-\frac {\sqrt {c+d x^2}}{a x} \]

[In]

Int[Sqrt[c + d*x^2]/(x^2*(a + b*x^2)),x]

[Out]

-(Sqrt[c + d*x^2]/(a*x)) - (Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/a^(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 486

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {c+d x^2}}{a x}+\frac {\int \frac {-b c+a d}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{a} \\ & = -\frac {\sqrt {c+d x^2}}{a x}+\frac {(-b c+a d) \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{a} \\ & = -\frac {\sqrt {c+d x^2}}{a x}+\frac {(-b c+a d) \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{a} \\ & = -\frac {\sqrt {c+d x^2}}{a x}-\frac {\sqrt {b c-a d} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{a^{3/2}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(304\) vs. \(2(70)=140\).

Time = 0.97 (sec) , antiderivative size = 304, normalized size of antiderivative = 4.34 \[ \int \frac {\sqrt {c+d x^2}}{x^2 \left (a+b x^2\right )} \, dx=\frac {-a^{3/2} d \sqrt {c+d x^2}+\left (-b c+a d+\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) \sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x \arctan \left (\frac {\sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (\sqrt {c}-\sqrt {c+d x^2}\right )}\right )+\sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} \left (b c-a d+\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) x \arctan \left (\frac {\sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (-\sqrt {c}+\sqrt {c+d x^2}\right )}\right )}{a^{5/2} d x} \]

[In]

Integrate[Sqrt[c + d*x^2]/(x^2*(a + b*x^2)),x]

[Out]

(-(a^(3/2)*d*Sqrt[c + d*x^2]) + (-(b*c) + a*d + Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d])*Sqrt[2*b*c - a*d + 2*Sqrt[b]*
Sqrt[c]*Sqrt[b*c - a*d]]*x*ArcTan[(Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(Sqrt[c]
- Sqrt[c + d*x^2]))] + Sqrt[2*b*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*(b*c - a*d + Sqrt[b]*Sqrt[c]*Sqrt
[b*c - a*d])*x*ArcTan[(Sqrt[2*b*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(-Sqrt[c] + Sqrt[c +
d*x^2]))])/(a^(5/2)*d*x)

Maple [A] (verified)

Time = 2.96 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.97

method result size
pseudoelliptic \(\frac {-\frac {\sqrt {d \,x^{2}+c}}{x}+\frac {\left (a d -b c \right ) \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right )}{\sqrt {\left (a d -b c \right ) a}}}{a}\) \(68\)
risch \(-\frac {\sqrt {d \,x^{2}+c}}{a x}+\frac {\left (a d -b c \right ) \left (-\frac {\ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}+\frac {\ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}\right )}{a}\) \(336\)
default \(\frac {-\frac {\left (d \,x^{2}+c \right )^{\frac {3}{2}}}{c x}+\frac {2 d \left (\frac {x \sqrt {d \,x^{2}+c}}{2}+\frac {c \ln \left (x \sqrt {d}+\sqrt {d \,x^{2}+c}\right )}{2 \sqrt {d}}\right )}{c}}{a}-\frac {b \left (\sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}+\frac {\sqrt {d}\, \sqrt {-a b}\, \ln \left (\frac {\frac {d \sqrt {-a b}}{b}+d \left (x -\frac {\sqrt {-a b}}{b}\right )}{\sqrt {d}}+\sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}\right )}{b}+\frac {\left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{b \sqrt {-\frac {a d -b c}{b}}}\right )}{2 a \sqrt {-a b}}+\frac {b \left (\sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}-\frac {\sqrt {d}\, \sqrt {-a b}\, \ln \left (\frac {-\frac {d \sqrt {-a b}}{b}+d \left (x +\frac {\sqrt {-a b}}{b}\right )}{\sqrt {d}}+\sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}\right )}{b}+\frac {\left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{b \sqrt {-\frac {a d -b c}{b}}}\right )}{2 a \sqrt {-a b}}\) \(724\)

[In]

int((d*x^2+c)^(1/2)/x^2/(b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

1/a*(-1/x*(d*x^2+c)^(1/2)+(a*d-b*c)/((a*d-b*c)*a)^(1/2)*arctanh((d*x^2+c)^(1/2)/x*a/((a*d-b*c)*a)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 273, normalized size of antiderivative = 3.90 \[ \int \frac {\sqrt {c+d x^2}}{x^2 \left (a+b x^2\right )} \, dx=\left [\frac {x \sqrt {-\frac {b c - a d}{a}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} + 4 \, {\left (a^{2} c x - {\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 4 \, \sqrt {d x^{2} + c}}{4 \, a x}, -\frac {x \sqrt {\frac {b c - a d}{a}} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {b c - a d}{a}}}{2 \, {\left ({\left (b c d - a d^{2}\right )} x^{3} + {\left (b c^{2} - a c d\right )} x\right )}}\right ) + 2 \, \sqrt {d x^{2} + c}}{2 \, a x}\right ] \]

[In]

integrate((d*x^2+c)^(1/2)/x^2/(b*x^2+a),x, algorithm="fricas")

[Out]

[1/4*(x*sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*
x^2 + 4*(a^2*c*x - (a*b*c - 2*a^2*d)*x^3)*sqrt(d*x^2 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^4 + 2*a*b*x^2 + a^2)) -
 4*sqrt(d*x^2 + c))/(a*x), -1/2*(x*sqrt((b*c - a*d)/a)*arctan(1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sq
rt((b*c - a*d)/a)/((b*c*d - a*d^2)*x^3 + (b*c^2 - a*c*d)*x)) + 2*sqrt(d*x^2 + c))/(a*x)]

Sympy [F]

\[ \int \frac {\sqrt {c+d x^2}}{x^2 \left (a+b x^2\right )} \, dx=\int \frac {\sqrt {c + d x^{2}}}{x^{2} \left (a + b x^{2}\right )}\, dx \]

[In]

integrate((d*x**2+c)**(1/2)/x**2/(b*x**2+a),x)

[Out]

Integral(sqrt(c + d*x**2)/(x**2*(a + b*x**2)), x)

Maxima [F]

\[ \int \frac {\sqrt {c+d x^2}}{x^2 \left (a+b x^2\right )} \, dx=\int { \frac {\sqrt {d x^{2} + c}}{{\left (b x^{2} + a\right )} x^{2}} \,d x } \]

[In]

integrate((d*x^2+c)^(1/2)/x^2/(b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*x^2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 117 vs. \(2 (58) = 116\).

Time = 0.80 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.67 \[ \int \frac {\sqrt {c+d x^2}}{x^2 \left (a+b x^2\right )} \, dx=\frac {{\left (b c \sqrt {d} - a d^{\frac {3}{2}}\right )} \arctan \left (\frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{\sqrt {a b c d - a^{2} d^{2}} a} + \frac {2 \, c \sqrt {d}}{{\left ({\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} - c\right )} a} \]

[In]

integrate((d*x^2+c)^(1/2)/x^2/(b*x^2+a),x, algorithm="giac")

[Out]

(b*c*sqrt(d) - a*d^(3/2))*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2)
)/(sqrt(a*b*c*d - a^2*d^2)*a) + 2*c*sqrt(d)/(((sqrt(d)*x - sqrt(d*x^2 + c))^2 - c)*a)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+d x^2}}{x^2 \left (a+b x^2\right )} \, dx=\int \frac {\sqrt {d\,x^2+c}}{x^2\,\left (b\,x^2+a\right )} \,d x \]

[In]

int((c + d*x^2)^(1/2)/(x^2*(a + b*x^2)),x)

[Out]

int((c + d*x^2)^(1/2)/(x^2*(a + b*x^2)), x)